Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
Acta Pharm Sin B ; 2023 Jan 12.
Article in English | MEDLINE | ID: covidwho-2176448

ABSTRACT

There are currently approximately 4,000 mutations in the SARS-CoV-2 S protein gene and emerging SARS-CoV-2 variants continue to spread rapidly worldwide. Universal vaccines with high efficacy and safety urgently need to be developed to prevent SARS-CoV-2 variants pandemic. Here, we described a novel self-assembling universal mRNA vaccine containing a heterologous receptor-binding domain (HRBD)-based dodecamer (HRBDdodecamer) against SARS-CoV-2 variants, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28.1), Delta (B.1.617.2) and Omicron (B.1.1.529). HRBD containing four heterologous RBD (Delta, Beta, Gamma, and Wild-type) can form a stable dodecameric conformation under T4 trimerization tag (Flodon, FD). The HRBDdodecamer -encoding mRNA was then encapsulated into the newly-constructed LNPs consisting of a novel ionizable lipid (4N4T). The obtained universal mRNA vaccine (4N4T-HRBDdodecamer) presented higher efficiency in mRNA transfection and expression than the approved ALC-0315 LNPs, initiating potent immune protection against the immune escape of SARS-CoV-2 caused by evolutionary mutation. These findings demonstrated the first evidence that structure-based antigen design and mRNA delivery carrier optimization may facilitate the development of effective universal mRNA vaccines to tackle SARS-CoV-2 variants pandemic.

2.
Sci Adv ; 8(51): eabq3500, 2022 12 23.
Article in English | MEDLINE | ID: covidwho-2193375

ABSTRACT

It is urgent to develop more effective mRNA vaccines against the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants owing to the immune escape. Here, we constructed a novel mRNA delivery system [IC8/Mn lipid nanoparticles (IC8/Mn LNPs)]with high immunogenicity, via introducing a stimulator of interferon genes (STING) agonist [manganese (Mn)] based on a newly synthesized ionizable lipid (IC8). It was found that Mn can not only promote maturation of antigen-presenting cells via activating STING pathway but also improve mRNA expression by facilitating lysosomal escape for the first time. Subsequently, IC8/Mn LNPs loaded with mRNA encoding the Spike protein of SARS-CoV-2 Delta or Omicron variant (IC8/Mn@D or IC8/Mn@O) were prepared. Both mRNA vaccines induced substantial specific immunoglobulin G responses against Delta or Omicron. IC8/Mn@D displayed strong pseudovirus neutralization ability, T helper 1-biased immune responses, and good safety. It can be concluded that IC8/Mn LNPs have great potential for developing Mn-coordinated mRNA vaccines with robust immunogenicity and good safety.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Manganese , Immunoglobulin G , RNA, Messenger/genetics , Immunity
3.
Advanced functional materials ; 2022.
Article in English | EuropePMC | ID: covidwho-1980072

ABSTRACT

SARS‐CoV‐2 variants are now still challenging all the approved vaccines, including mRNA vaccines. There is an urgent need to develop new generation mRNA vaccines with more powerful efficacy and better safety against SARS‐CoV‐2 variants. In this study, a new set of ionizable lipids named 4N4T are constructed and applied to form novel lipid nanoparticles called 4N4T‐LNPs. Leading 4N4T‐LNPs exhibit much higher mRNA translation efficiency than the approved SM‐102‐LNPs. To test the effectiveness of the novel delivery system, the DS mRNA encoding the full‐length S protein of the SARS‐CoV‐2 variant is synthesized and loaded in 4N4T‐LNPs. The obtained 4N4T‐DS mRNA vaccines successfully trigger robust and durable humoral immune responses against SARS‐CoV‐2 and its variants including Delta and Omicron. Importantly, the novel vaccines have higher RBD‐specific IgG titers and neutralizing antibody titers than SM‐102‐based DS mRNA vaccine. Besides, for the first time, the types of mRNA vaccine‐induced neutralizing antibodies are found to be influenced by the chemical structure of ionizable lipids. 4N4T‐DS mRNA vaccines also induce strong Th1‐skewed T cell responses and have good safety. This work provides a novel vehicle for mRNA delivery that is more effective than the approved LNPs and shows its application in vaccines against SARS‐CoV‐2 variants. In this study, mRNA vaccines against SARS‐CoV‐2 variants delivered by lipid nanoparticles based on 4N4T lipids are constructed, and successfully trigger robust and durable humoral immune responses against SARS‐CoV‐2 and its variants including Delta and Omicron. In addition, head‐to‐head comparison studies find that the novel 4N4T lipids have a higher mRNA delivery efficiency than SM‐102.

4.
Signal Transduct Target Ther ; 7(1): 166, 2022 05 21.
Article in English | MEDLINE | ID: covidwho-1947279

ABSTRACT

The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists' desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.


Subject(s)
COVID-19 , COVID-19/genetics , COVID-19/therapy , Humans , Pandemics , Proteins , RNA, Messenger/genetics
5.
Signal Transduct Target Ther ; 7(1): 199, 2022 06 25.
Article in English | MEDLINE | ID: covidwho-1908147

ABSTRACT

Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.


Subject(s)
COVID-19 , Pseudomonas Infections , Animals , Drug Resistance, Microbial , Humans , Mammals/metabolism , Pseudomonas Infections/drug therapy , Pseudomonas Infections/genetics , Pseudomonas aeruginosa/genetics , Technology , Virulence Factors/genetics , Virulence Factors/metabolism , Virulence Factors/pharmacology
6.
Nucleic Acids Res ; 50(8): e47, 2022 05 06.
Article in English | MEDLINE | ID: covidwho-1684755

ABSTRACT

Gene-editing technologies, including the widespread usage of CRISPR endonucleases, have the potential for clinical treatments of various human diseases. Due to the rapid mutations of SARS-CoV-2, specific and effective prevention and treatment by CRISPR toolkits for coronavirus disease 2019 (COVID-19) are urgently needed to control the current pandemic spread. Here, we designed Type III CRISPR endonuclease antivirals for coronaviruses (TEAR-CoV) as a therapeutic to combat SARS-CoV-2 infection. We provided a proof of principle demonstration that TEAR-CoV-based RNA engineering approach leads to RNA-guided transcript degradation both in vitro and in eukaryotic cells, which could be used to broadly target RNA viruses. We report that TEAR-CoV not only cleaves SARS-CoV-2 genome and mRNA transcripts, but also degrades live influenza A virus (IAV), impeding viral replication in cells and in mice. Moreover, bioinformatics screening of gRNAs along RNA sequences reveals that a group of five gRNAs (hCoV-gRNAs) could potentially target 99.98% of human coronaviruses. TEAR-CoV also exerted specific targeting and cleavage of common human coronaviruses. The fast design and broad targeting of TEAR-CoV may represent a versatile antiviral approach for SARS-CoV-2 or potentially other emerging human coronaviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents , COVID-19/therapy , Humans , Mice , Pandemics/prevention & control , RNA Editing/genetics , RNA, Guide, Kinetoplastida/genetics , SARS-CoV-2/genetics
7.
iScience ; 24(1): 101928, 2021 Jan 22.
Article in English | MEDLINE | ID: covidwho-970269

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is reported essential for detecting intracellular bacteria. However, it remains to be determined whether and how cGAS is involved in extracellular bacterial infection. Here, we report that cGAS is essential for mediating type I interferon (IFN) production in infection by multiple extracellular pathogens, including Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus. In addition, the canonical cGAS-stimulator of interferon gene (STING)-IFN axis is required for protecting mice from P. aeruginosa-induced mouse acute pulmonary infection, confirmed in cGAS pathway-specific gene deficiency mouse models. cGAS -/- and STING -/- mice exhibited reduced type I IFNs production, excessive inflammatory response accompanied with decreased resistance to P. aeruginosa challenge. Unfolded protein response was also modulated by cGAS through IRF3 and type I IFNs under P. aeruginosa infection. Collectively, these findings uncover the importance of cGAS in initiating immune responses against extracellular bacterial infection.

SELECTION OF CITATIONS
SEARCH DETAIL